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Abstract

Several authors ha,,e recently carried out 2D simulations of turbulent convection for

both solar and massive stars. Fitting the 2D results with the MLT, they obtain that

_tLT>l specifically, 1.41O_ILT<l.8. The authors further suggest that this methodology

could be used to calibra¢e the MLT used in stellar evolutionary codes. We suggest the

opposite viewpoint: the 2D results show that MLT is internally inconsistent because the

resulting _MLT>I violates the ML T basic assumption that _MLT<'I. When the 2D results are

fitted with the CM model, _CMT<I, in accord with the basic tenet of the model.

On the other hand, since both MLT and CM are local models, they should be replaced

by the next generation of non-local, time dependent turbulence models which we discuss in

some detail.

I. 2D and 3D turbulence

It is known that turbulence is a 3D, not a 2D phenomenon. The latter is an interesting

conceptual model that has challenged our understanding of the mechanism of non-linear

interactions but physically, 3D turbulence is fundamentally different from the 2D

counterpart. In 3D turbulence, energy is conserved while in 2D both energy and enstrophy

are conserved. In the 3D case, energy in the largest scales dribbles down to increasingly



smaller scalesunder the vortex stretching phenomenon.The "cascadeprocess" does not

stop until it reachesscaleswheremolecularviscosity stopsany further cascading,rather, it

dissipatesenergy into heat. In the 2D case, the oppositeoccurs: energy climbs from the

smallest to the largest scalespiling up most of the turbulent kinetic energy in just a few

large scales (the so--called anti Robin Hood effect, from the poor to the rich, while

enstrophy dribbles down toward smallerscales).In the 2D case,the bulk of energyresides

in a few very large scales,quite a different situation from 3D.

On the basis of these general arguments, one infers that a 2D model would

overestimatethe extent of overshootiag: in fact, the piling of most of the energy into the

largest scales, which govern a diffus:ve process like overshooting, also overestimates the

extent to which they travel. Recent _vork on two different fronts lends support to these

general ideas. On the astrophysical s,de, Schlattl and Weiss (1999), generalizing work of

Blocker et al. (1998), used the 2D p:escription for the extent of overshooting below the

solar convective zone, but were unable to simultaneously reproduce the solar sound speed

profile provided by hello---seismology as well as to account for the observed Li depletion.

From the numerical simulation point of view, Kupka and Mutsham (2000) have

recently studied the case of an optically thick fluid with a prescribed radiative

conductivity. The 2D simulations systematically overestimate the extent of overshooting

visa' vis the 3D result as well as the kinetic and potential energy, especially near the

boundaries of the convective regions and in the overshooting region.

Thus, if 2D turbulence is not the correct physical template of 3D, why use it at all?

The reason is practicality. We recall that in a 3D case the number of relevant dynamical

scales is quite large: if L is the largest scale and g is where viscous dissipation begins, one

has the well known relation:

L Re3/4 (I)
7 ~

In the sun, for example, where conservativelyRe~f012, one obtains

L
7  I°9 (2)



The first dissipation scale is a billion times smaller than the largest scale. The number .N of

grid points that a numerical simulation must resolve is given by the cube of (1) and thus

N ~ Re 9/4 ~ 1027 (3)

which issome 18 ordersof magnitude largerthan

N~109 (4)

which is the best computers can do today. Translated in more physical terms, this means

that large eddy simulations (LES) resolve numerically not even 1% of all the scales, leaving

the bulk of them to be accounted for by a subgrid scale model (SGS), a misnomer borrowed

from engineering turbulence where the much low(,r Re allows to numerically resolve eddies

well inside the Kolmogorov region, something no _ yet achieved in stellar LES. Thus, LES

must model more than 90% of the unresolved sctles and no presently used SGS model is

physically complete. For example, all present niodels assume that the SGS are purely

dissipative while it can be shown quite generally (Canuto, 2000) that they are dissipative,

advective (stirring) and diffusive (mixing). Particularly deficient are the so---called

hyperviscosity model which have been shown to have a "skill index" of barely 10%,

meaning that once the LES results are compared with an eddy resolving model, the LES

captures 10% of the real values (Gille and Davis, 1999). Thus, both the inability of 3D LES

to catch most of the scales and the difficulties associated with the SGS have made the 2D

case very attractive since one can resolve many more scales thus alleviating considerably

the burden of the SGS model to capture the unresolved scales not to mention the

concomitant saving of computer time.

The bad news is that 2D is at best a doubtful substitute for a 3D case.

II. The 2D solution

Ludwig et al. (1999; LFS) and Asida (2000) have carried out 2D simulations of

turbulent convection and calibrated the mixing length for the sun and red giant envelopes.

As one observes from Figure 5 of LFS, the values of O_MLT derived ,¢rom the 2D code are all



larger than unity, the maximum being around 1.8. Asida (2000) also finds that _MLT 2>1,

specifically 1.4 for a red giant of 1.2 solar masses. These results imply that the condition of

validity of the Boussinesq approximation upon which the MLT model is based (Spiegel and

Veronis, 1960)

/_MLT = _ ,(1 (5)
P

is violated. Stated differently, in order to reproduce the 2D data, the MLT must violate the

basic condition for its existence, Eq.(5). It may be of interest to recall that in the case of

the very convective earth's boundary layer where /=lkm, H =10km, condition (5) is
P

satisfied thus justifying the use of the Boussinesq approximati( n.

Next, consider the CM model. It was constructed _lth the specific purpose of

restoring at the very least some semblance with the real 3L, convection. Because of the

arguments presented earlier, this meant that one had to account for the large family of

eddies that span the range given by (2). The specific tuIbulence model employed is

immaterial since the same result was obtained using three different turbulence models.

Since the CM is still a largely local model while by definition convection is non-local, a

further attempt was made to introduce some non-locality via the relation

f = z + acMTH p (6)

which is non-local in the sense that what happens at a given z in a star depends on what is

between that point and the "wall" where convection dies. Thus, far away points can

influence local points. The left-over non-locality is paxa_neterized with the second term in

(6) which should satisfy (5). This is indeed the case, as Fig.6 of LFS shows.

III. Different interpretation of the 2D results

We now offer our interpretation of the 2D results. The relevance of the work of

Ludwig et al. (1999) and of Asida (2000) is that they show for the first time that in order

to reproduce the 2D simulation data with the MLT formalism, one has to chose an aMLT



that violates the premisesof the MLT model itself. We view this as another proof that the

MLT is internally inconsistent and thus not a viable model while the previous authors

interpret their aMLT>I as a way to calibrate the MLT for stellar codes. Since O_MLT>I had

already been used before, one could be tempted to interpret the numerical 2D results as an

a posteriori justification. But, in our opinion, two wrongs do not make one right. Accepting

O_MLT>I is tantamount to sweeping under the rug an inconsistency under the claim that the

mod_l "fits" the data. Inconsistencies must be resolved, not overlooked or much less

accepted. By contrast, the CM model, faces the 3D problem quite directly and accounts for

all the eddies. It is internally consistent and does not violate (5).

IV. Life after local models

Since a value of OIMLT>I had already been arrived at by empirically fitting the MLT

to stellar data, one could have concluded long ago that such an a violates ohe basic tenet of

MLT, O_MLT< 1. The case was never made because it was alleged many times that such an

empirical "a" covered uncertainties other than those of convection. The 2D calculations of

Ludwig et al. (1999) and of Asida (2000) make that excuse no longer tenable. They provide

for the first time a one-to-one correspondence between models of convection and the 2D

results, other astrophysical uncertainties being subtracted out. It is also important to stress

that both the sun and red giants yield the same result, _MLT>I. Thus, the MLT fits the

data only with an o_ that is internally inconsistent while the CM model is internally

consistent.

The next step is to abandon all local models in favor of non-local models which avoid

altogether the introduction of parameters like a. What are the available choices? A 3D

simulation is simply too time consuming to be routinely used in stellar structure

calculations, notwithstanding the still unresolved problem of how well the subgrid scales

have been represented thus far (Canuto, 2000); a 2D simulation is not a reliable template of

a 3D case, as the previous theoretical, numerical and astrophysical arguments have



indicated. A key feature of any model that attempts to describe turbulent convection

(astrophysical or otherwise) is non-locality. Since positive buoyancy overpowers gravity,

large eddiescan and do exist and are diffusive and advective, in contrast to small eddies

that are mostly dissipative. As a counter example, we can cite the caseof shear driven

turbulence in the absenceof convection: on average, the eddies are smaller and thus

non-locality is less important (Kaimal and Finnigan, 1994). A typical example of

non-locality is ti,e equationfor the turbulent kinetic energyK:

OK 0 F -_'Y + _z _-P-e (7)

where

F =½_, K=½_ (_)

Here, the second term on the left is the non-locality represented by the divergence o" the

flux of turbulent kinetic energy F_, a third-order moment (TOM). The local ;imit

corresponds to taking P=e, that is, production (P) equals dissipation (_)" turbulen.:e is

dissipated where it is produced. Both MLT and the CM model are based on the P=(

assumption. The non-local term, which may act as source and/or a sink of turbulent

kinetic energy, represents the new dynamical feature. Once a non-local model is

constructed, it is expected to reproduce key features of turbulent convection. Specifically:

1) the up/downdrafts (first discovered in geophysical not astrophysical flows, Haugen.

1973),

2) Petrovay (1990) first pointed out that even quite general formulations of convection can

reproduce the most general topological features of the up/down drafts,

3) geophysical studies that predate astrophysical studies have provided general rules to

study the filling factors of the up/down drafts. The relevance of these studies is to exhibit

the key role of the "skewness" of the velocity field:

Sw = w-'3(w-'2)"3/2 (9)

the area aa third--order moment that governs the topological filling factor, namely

occupied by the updrafts (or 1-a for the downdraffs)
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= _[1 - S (4+S 2)-_/_]
W" W"

Thus, a key challenge of any model is to compute Sw.

TOM's

which are related to Sw,

(]0)

However, since there are several

(11)

one must model all of them. The problem of constructing a

reliable model for the TOMs b_s a long history in geophysical flows dealing with strong

convection. Suffices to say-that at present, there is only one model that has solved

analytically the dynamic equations for the TOMs and shown that the results reproduce the

LES data (Canuto et al., 1994; Zilitinkevich et al., 1999).

4) numerical simulations of turbulent convection exhibit several interesting features (for a

clear presentation, see Cattaneo et al., 1991, especially fig.14c,d): the strong downfiows

transport heat upward at nearly the same rate that they transport kinetic energy

downward, without actually contributing to the net energy transport. We must note,

however, that Rieutord and Zahn (1995) have pointed that this may be due to the

relatively low Re used in the numerical simulations. If confirmed by large eddy simulations,

the main transport process to carry heat is the updrafts which is precisely the mechanism

studied by all turbulent models for many decades. Turbulence studies thus provide well

tested models to quantify the heat transfer by the updrafts.

A new non-local, time dependent model which underwent extensive testing on several

types of turbulent flows (Canuto and Dubovikov, 1998; CD98) has recently also been used

to study astrophysical convection (Kupka 1939a,b). The CD98 model was shown to

reproduce the major features of convection (e.g., fluxes and filling factors) in a fraction of

the time required by the numerical simulations thus opening the possibility of a hook-up

with stellar codes. A full non-local, as well as compressible, model also exists (Canuto,

1997) and it will next be solved and compared with numerical simulations results. More

recently, Kupka and Muthsam (2000) have shown that depending on the specific problem

studied, the results of the 2D simulations are worse or comparable to that of the CD98



modelwith the addedadvantagethat the time required is a minute fraction of the 3D/2D

calculations.
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